翻訳と辞書 |
Lyapunov stable : ウィキペディア英語版 | Lyapunov stability
Various types of stability may be discussed for the solutions of differential equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is asymptotically stable. The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs. ==History== Lyapunov stability is named after Aleksandr Lyapunov, a Russian mathematician who published his book ''The General Problem of Stability of Motion'' in 1892.〔Lyapunov A. M. ''The General Problem of the Stability of Motion'' (In Russian), Doctoral dissertation, Univ. Kharkov 1892 English translations: (1) ''Stability of Motion'', Academic Press, New-York & London, 1966 (2) ''The General Problem of the Stability of Motion'', (A. T. Fuller trans.) Taylor & Francis, London 1992. Included is a biography by Smirnov and an extensive bibliography of Lyapunov's work.〕 Lyapunov was the first to consider the modifications necessary in nonlinear systems to the linear theory of stability based on linearizing near a point of equilibrium. His work, initially published in Russian and then translated to French, received little attention for many years. Interest in it started suddenly during the Cold War period when the so-called "Second Method of Lyapunov" (see below) was found to be applicable to the stability of aerospace guidance systems which typically contain strong nonlinearities not treatable by other methods. A large number of publications appeared then and since in the control and systems literature.〔 English tr. Princeton 1961〕 More recently the concept of the Lyapunov exponent (related to Lyapunov's First Method of discussing stability) has received wide interest in connection with chaos theory. Lyapunov stability methods have also been applied to finding equilibrium solutions in traffic assignment problems.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lyapunov stability」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|